GirlsGoIT Wiki (ro)
RU
  • Introducere
  • Unelte
    • Slack
    • Visual Studio Code
    • CodeSandbox
      • Cum rezolvi un task la proiect
      • Cum rezolvi un exercițiu
    • GitHub
  • FRONTEND STATIC
    • Internet
    • HTML
    • CSS
    • Exerciții
      • Erontend Static Exercitii
  • FRONTEND DINAMIC
    • JavaScript
      • Introducere
      • Consola Browser'ului
      • Variabile
      • Tipuri de date
      • Operatori
      • JavaScript & HTML
      • Funcții
      • DOM & Window API
      • Math API
      • Condiționale (if)
      • Cicluri (for & while)
    • Vue.js
      • Componente Vue
      • Componente & Forme
      • Lifecycle hooks
      • Comunicare între componente
      • Vue Router
      • Axios
      • Instalare locală
    • Exercitii
    • Rest API
      • Rest api GET
      • Rest api GET one
      • Rest api POST
      • Rest api PUT
      • Rest api DELETE
  • PYTHON
    • Introducere
    • Variabile
    • Tipuri de Date
    • Operatori
    • Control Flow
    • Liste
    • Cicluri for
    • Funcții
    • Dictionare
    • Seturi
    • Fișiere
    • Try-except-finally. Lambda
    • Librării, module
    • Exercitii
      • Variabile
      • TIpuri de Date
      • Operatori
      • If...else
      • Liste
      • Cicluri for
      • Funcții
      • Dicționare
      • Seturi
      • Fișiere
      • Try-except, Lambda
      • Librării , module
      • ✨Mai multe exerciții ✨
    • Python Archiva
  • BACKEND
    • Instalare Python
    • Python OOP
    • Baze de date
    • Django
    • REST API's
    • Django REST Framework
    • Exerciții
      • Python OOP
      • Django
      • Django Rest Framework
  • Data Science
    • Introducere în Data Science
    • Vizualizarea datelor
      • Matplotlib
    • Numpy
    • Pandas
    • DecisionTrees
  • 3D Printing
    • Intro
    • Fusion 360 Intro
    • Sketch
    • Solid body
    • Arduino
    • Final Projects
  • ARHIVA
    • Milligram
    • Drone
      • Intro
    • Old Backend
      • Bootstrap
      • Hello Flask
      • DB Modeling
      • Ubuntu Quest
      • Baze de date
      • Heroku Deploy
    • Robotica NAO
      • Finalizarea proiectelor
      • Flow Control
      • Cum creez un Dialog box
      • Convenția GirlsGoIT Robotics Choregraphe
      • Tracker
      • Dialog - QiChat
    • Robotica
      • 1.1 mBlock
      • 1.2 Descărcarea, instalarea și conectarea
      • 1.3 Execută un program de pe mBlock IDE sau încarcă pe Board
      • 1.4 Conectarea prin USB, Bluetooth sau 2.4GHz
      • 2.1 Programe Simple
      • 2.2 Senzori
      • 2.3 Exerciții avansate - Scratch
      • 3.0.1 Instalare Arduino IDE
      • 3.0.2 Instalare Arduino IDE WEB
      • 3.1 Configurare Arduino IDE
      • 3.2 Introducere în limbajul C
      • 3.3 Exemple Arduino - mBot
      • 3.4 Line follow - Arduino
      • 3.5 Ultimate robot
      • 4.1 Planificarea și managementul proiectelor
      • Custom robot
      • Noțiuni și explicații
      • Delay fara sa opreasca programul
      • Alte resurse și exemple
Powered by GitBook
On this page
  1. ARHIVA
  2. Old Backend

DB Modeling

During this session we'll learn how to model the data inside your database. There are few approaches when it comes to model the database architecture.

When modeling data, you can choose an approach best suited to the nature of the work to be done. The approaches to data modeling include the following: designing a new database, developing a design for an existing database, or performing maintenance on an existing database design:

  • Top-Down Modeling: for designing a new database

  • Bottom-Up Modeling: for creating a database based on extracting metadata from an existing database or using the DDL code obtained from an implementation of an existing database

  • Targeted Modeling: for adapting a database to new requirements

We will consider only the first one: Top-Down Modeling, for simplicity, let's refer to that as Modeling.

The Top-Down Modeling

So we have a task to create a database that will fit the needs of our project. This database has to gather information about business requirements and the internal environment, and proceeds to define processes, a logical model of the data, one or more relational models, and one or more physical models for each relational model.

In other words, in order to be able to create a good enough DB architecture from the very beggining, we have to clearly understand:

  • What the specifics of our project are?

  • What is the data that we will operate with?

  • What are the technical limitations?

Answering these questions will help us find the right way to represent the data inside the DB.

Let's recall the Product Engineering session. We have created a schematic representation of our projects.

[All the teams will need to have the drawn schema from Product Engineering session in front of them. During maximum 10 minutes the teams, and the mentors will prepare a short description of the features in the form of bullet points.]

[During another 15 minutes, we'll discuss these features. And on the example of Users we'll have a practical session of creating the Logigal model of a User.]

Let's first of all define one of our Users.

[Work on user auth here]

PreviousHello FlaskNextUbuntu Quest

Last updated 6 years ago